CFD analysis of ACHE

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

Modelling details

- Numerical modelling based on our practice
 - Steady-state
 - Coupled solver
 - Ideal gas
 - Buoyancy forces activated
 - Turbulence Model: Standard k-e with Buoyancy effects
- Simplified models for fan and bundle
 - Fan: pressure-jump model implements fan curve (dp vs flow rate)
 - Bundle: porous media implements pressure loss coefficient and heat transfer

Aerodynamic modelling of bundle

- A porous media is implemented to model the aerodynamic losses through the bundle
 - The porous media approach introduces a distributed source of momentum (additional pressure gradient) into a confined volume representing the bundle
 - $\rightarrow~$ The pressure field is continuous across the bundle
 - The slope of pressure decay is increased within the «active» region
 - \rightarrow The source intensity and direction are defined through local directional loss coefficients k_i multiplying the dynamic pressure based on the different velocity components U_i

$$S_{m,i} = -\frac{\partial p}{\partial x_i} = k_i 0.5 \rho U_i^2$$

- The bundle normal direction local coefficient can be calculated assuming uniform loss distribution across the bundle using the pressure drop estimated at the duty point, the bulk velocity U_n and the bundle volume thickness t

$$- k_n = K/t = \frac{\Delta p/t}{0.5\rho U_n^2}$$

Modelling details

- Protections from cross-wind
 - Chimney Over
 - ightarrow Top mounted M75 perimeter screens

Results

Performance vs. No windscreens

Results -WS = 1 mph

• Temperature:

Wind direction

Results -WS = 1 mph

• Vertical velocity w:

Wind direction

Results -WS = 1 mph

• Temperature with velocity vectors on crosswind plane:

No windscreens

Under

Raised ACHE

Results - WS = 12 mph

• Temperature:

Wind direction

Results -WS = 12 mph

Vertical velocity w:

Wind direction

Q 0 \bigcirc 0 0 0 0 \bigcirc 0 0 Ø 0 0 \bigcirc 0 0 \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} 0 \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} 0 No windscreens Under **Raised ACHE** Over

Velocity w Vel

1.000e+001

9.000e+000 8.000e+000 7.000e+000

6.000e+000 5.000e+000

4.000e+000 3.000e+000

2.000e+000

1.000e+000 0.000e+000

[m s^-1]

0

0

Results -WS = 12 mph

• Temperature with velocity vectors on crosswind plane:

No windscreens

Under

Raised ACHE

Results - WS = 12 mph

• Temperature with velocity vectors on wind plane:

