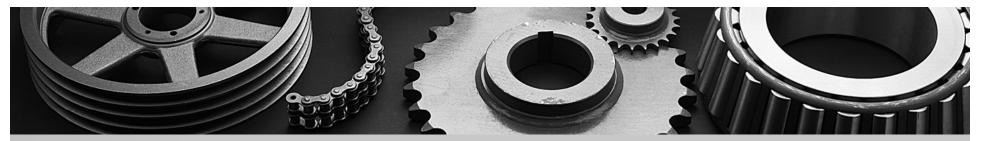


MOTION

How Do VFD Drives Save Energy?

Lock AV hubs and install VFD's, this saves energy and gives you more control.



Power Factor Improvement

- Power factor, as it affects the utilities, is determined at plant peak operating load and you are penalized if it is too low.
- Power factor of an unloaded motor is lower than that of a loaded motor, but the total current is also much lower at no load.
- A VFD corrects for Power factor

Affinity Laws – Centrifugal Loads

- 1. Airflow varies in direct proportion to Rpm CFM=fan RPM
- 2. Pressure capacity varies with the square of the change in Rpm's **SP=fan RPM (squared)**
- 3. Power required varies with the cube of the Rpm change. HP= Fan Rpm (cubed)

Affinity Laws – Centrifugal Loads

%Speed	%How	%HP Required
100	100	100
90	90	73
80	80	51
70	70	34
60	60	21
50	50	13
40	40	6

Formula to calculate energy savings <u>HP x hours of operation x.746/motor eff = KWH x .0?</u> Cent per KW hour.

Example: 40HP ACHE running 80% all year is using only ¹/₂ the HP (so 20HP saved), here is the end result for .07cents per KW hour of power.

<u>Result:</u> 20 x 8736 x .746/.93=140,151KWH x .07 cent = 9.810.00 saved/year/fan of power.

